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ABSTRACT 

Some comments are made on the stability criterion of Lienard and Chipart for the 
zeros of a polynomial to have negative real parts. 

The statement of Theorem 1 of the paper [l] by B. N. Datta is not quite 
precisely the stability criterion of Lienard and Chipart [2, p. 3191, which may 
be stated as 

THEOREM 1’. Necessary and sufficient conditions for all the zeros of 
a(x) to have negative real part are that the Bezout matrix B,_ is positive 
definite and that about half of the a i’s in proper order are negative. 

The above theorem contains about n conditions for the nthdegree poly- 
nomial a(x). It seems that Dr. Datta misquoted the original criterion of 
Lienard and Chipart. By doing this, he obtained 3n/2 conditions. However, 
Krein and Naimark (Reference [9] of the paper) quoted the original criterion 
correctly. 

The original criterion of Lienard and Chipart was misquoted in the same 
way by Anderson [3, p. 6991. Anderson then gave a new proof of a correct 
form of the criterion, with about n conditions, which he attributed to 
Gantmacher [4, p. 2211. 

To prove Theorem 1’ stated above, one can follow the proof of Anderson 
[3] by noting that for n odd, 

B ,,, g = JDI, 
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where J is the matrix with ones on its secondary diagonal and zeros elsewhere, 
and D is a symmetric matrix defined by Anderson; and for n even, 

where C is again a symmetric matrix defined by Anderson. 

REMARKS. 

(1) The theorem of Lienard and Chipart was proven several times (some- 
times rediscovered, as in Fuller [5]) by many authors, such as Marden [6], 
Barnett [7] and, recently, Husseyin and Jury [8], using the inners approach. 

(2) When half of the ai’s in special order are negative and Bh,g is positive 
definite, then the other half of the a,‘~ are necessarily negative. Hence, 
whether there are n or n/2 coefficients to be examined is more an esthetic 
than an immediate practical consideration. Furthermore, the proof of Theo 
rem 1 of Datta might be simpler than for the above Theorem 1’. The 
possibility of such a simpler proof was also mentioned by Anderson in his 
conclusion. 

(3) It is pertinent to mention the works of Parks [9] in connection with 
the proof of stability criteria using Lyapunov’s theorem of stability. 

(4) It is of historical interest to note that Lienard [lo] in an earlier paper 
was concerned with the redundancy of the stability conditions. This concern 
finally led him, in collaboration with Chipart, to publish their famous crite- 
rion. This historical fact has induced this writer to make the above comments 
to clear up the redundancy conditions quoted above. 

(5) In Anderson and Jury [ 111, a conjecture was proposed that the 
Lienard-Chipart criterion gives the simplest set of conditions in terms of 
number of inequalities and total degree. However, a rigorous proof is still 

lacking. 
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